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Last Time. We proved (Corollary 19.8) that dim(V @ W) = dim(V)-dim(W).

Corollary 20.1 (6.7.1 in online notes). If V is a vector space with basis {v;}?_; and W is a vector space
with basis {w;}7", then {v; ® w;}; ; is a basis of V@ W.

Proof. We know that {v ® w‘v € V,w € W} spans V@ W by our construction of V' ® W. In particular,
{vi ® w;}; ; spans because for any v € V w € W we have

VRWw = (Z vi(v) vi> ® (Z wi(w) 'LUj) = va(v) wi(w) v; @w;.

O

Lemma 20.2 (6.8 in online notes). The map VW — W xV, (v,w) — (w,v) induces a linear isomorphism
P VW oWV, pvew)=weuv foralveV and allw e W.

Proof. Themap b: V xW — WV, b(v,w) = w Qv is bilinear. Therefore by the universal property there
exists a unique map @ : VW — WV, ¢o(v®@w) = w® v. Moreover, the map is surjective because
{w® v|w € W,v € V} spans W ® V. By dimension count, ¢ is an isomorphism. O

Lemma 20.3 (6.9 in online notes). There is a natural isomorphism ¢ : V* @ W — Hom(V, W) of vector
spaces such that (I @ w)(v) = l(v) w.

Proof. Consider the bilinear map b : V* x W — Hom(V, W) given by b(l,w) = I(—)w foralll € V*, w € W.
By the universal property of V* ® W there exists a unique linear map ¢ : V* @ W — Hom(V, W) with
ol ®@ w) = I(—) w. Moreover, if {v;} is a basis of V, {v}} is a dual basis of V*, and {w;} is a basis of W,
{w3}, then {v; ® w;} is a basis of V* ® W and {v(—)w;} is a basis of Hom(V, W) (prove this!). Hence ¢
is an isomorphism. O

Lemma 20.4 (6.10 in online notes). A pair of linear maps A:V — W, A" : V' — W' determine a unique
linear map AQ A" : VRV - WeW', (A A\ (vev)=Ave A'v'.

Proof. The map V x V' — W @ W', (v,v') — Av ® A’v' is bilinear. O
Exercise 20.1. The map R®V — V, r ® v +— rv is a well-defined isomorphism.

Exercise 20.2. For all vector spaces U, V, W there exists an isomorphism U@ (VW) - (U V)W
such that © ® (v @ w) — (L Q@ v) @ w.

Notation.
yel .= R
Vel = v
Ve = VeV
ver = vertlegy

n

—
Exercise 20.3. For all vector spaces V, U there exists a natural isomorphism Hom(V®" U) — Mult(V,...,V;U).

Definition 20.5. An associative algebra A is a vector space A over R together with an R-bilinear map
m:AxA— A m(a,b) = ab such that m(m(a,b),c) = m(a, m(b,c)) (that is, (ab)c = a(bc)).

Definition 20.6 (6.16 in online notes). An associative algebra is graded (by nonnegative integers) if

A:®Ai:ZAi:AO@A1@A2@'“
=0 i=0

and if for all a € A; and all b € A;, then ab € A;4;.

Example 20.7. Consider the algebra R[z] of polynomials in one variable. It is graded by degrees of
monomials: Rjz] = R® Rz @R2%2 @ ---.
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Definition 20.8 (after 6.16 in online notes). The tensor algebra of a vector space V is an associative algebra
T(V) =@, V®" with graded multiplication V& x V™ — V@n+m) given by (a,b) — a @ b.

Remark 20.9. Notice that 7 (V) has a unit 1 € R.

Definition 20.10 (6.19 in online notes). Let V be a finite dimensional vector space over R. A Grassmann
algebra A*V on the vector space V is a graded associative algebra over R with unit together with an injective
linear map i : V — A*V, AV = i(V) and the following universal property: For any associative algebra A
and any linear map j : V — A such that j(v) j(w) = 0 there exists a unique map of algebras j : AV — A
such that the following diagram commutes:

AVl A
vV
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