Last Time. We proved (Corollary 19.8) that $\operatorname{dim}(V \otimes W)=\operatorname{dim}(V) \cdot \operatorname{dim}(W)$.
Corollary 20.1 (6.7.1 in online notes). If V is a vector space with basis $\left\{v_{i}\right\}_{i=1}^{n}$ and W is a vector space with basis $\left\{w_{j}\right\}_{j=1}^{m}$, then $\left\{v_{i} \otimes w_{j}\right\}_{i, j}$ is a basis of $V \otimes W$.
Proof. We know that $\{v \otimes w \mid v \in V, w \in W\}$ spans $V \otimes W$ by our construction of $V \otimes W$. In particular, $\left\{v_{i} \otimes w_{j}\right\}_{i, j}$ spans because for any $v \in V w \in W$ we have

$$
v \otimes w=\left(\sum v_{i}^{*}(v) v_{i}\right) \otimes\left(\sum w_{j}^{*}(w) w_{j}\right)=\sum v_{i}^{*}(v) w_{j}^{*}(w) v_{i} \otimes w_{j} .
$$

Lemma 20.2 (6.8 in online notes). The map $V \times W \rightarrow W \times V,(v, w) \mapsto(w, v)$ induces a linear isomorphism $\varphi: V \otimes W \rightarrow W \otimes V, \varphi(v \otimes w)=w \otimes v$ for all $v \in V$ and all $w \in W$.
Proof. The map $b: V \times W \rightarrow W \otimes V, b(v, w)=w \otimes v$ is bilinear. Therefore by the universal property there exists a unique map $\varphi: V \otimes W \rightarrow W \otimes V, \varphi(v \otimes w)=w \otimes v$. Moreover, the map is surjective because $\{w \otimes v \mid w \in W, v \in V\}$ spans $W \otimes V$. By dimension count, φ is an isomorphism.
Lemma 20.3 (6.9 in online notes). There is a natural isomorphism $\varphi: V^{*} \otimes W \rightarrow \operatorname{Hom}(V, W)$ of vector spaces such that $\varphi(l \otimes w)(v)=l(v) w$.

Proof. Consider the bilinear map $b: V^{*} \times W \rightarrow \operatorname{Hom}(V, W)$ given by $b(l, w)=l(-) w$ for all $l \in V^{*}, w \in W$. By the universal property of $V^{*} \otimes W$ there exists a unique linear map $\varphi: V^{*} \otimes W \rightarrow \operatorname{Hom}(V, W)$ with $\varphi(l \otimes w)=l(-) w$. Moreover, if $\left\{v_{i}\right\}$ is a basis of $V,\left\{v_{i}^{*}\right\}$ is a dual basis of V^{*}, and $\left\{w_{j}\right\}$ is a basis of W, $\left\{w_{j}^{*}\right\}$, then $\left\{v_{i}^{*} \otimes w_{j}\right\}$ is a basis of $V^{*} \otimes W$ and $\left\{v_{i}^{*}(-) w_{j}\right\}$ is a basis of $\operatorname{Hom}(V, W)$ (prove this!). Hence φ is an isomorphism.

Lemma 20.4 (6.10 in online notes). A pair of linear maps $A: V \rightarrow W, A^{\prime}: V^{\prime} \rightarrow W^{\prime}$ determine a unique linear map $A \otimes A^{\prime}: V \otimes V^{\prime} \rightarrow W \otimes W^{\prime},\left(A \otimes A^{\prime}\right)\left(v \otimes v^{\prime}\right)=A v \otimes A^{\prime} v^{\prime}$.
Proof. The map $V \times V^{\prime} \rightarrow W \otimes W^{\prime},\left(v, v^{\prime}\right) \mapsto A v \otimes A^{\prime} v^{\prime}$ is bilinear.
Exercise 20.1. The map $\mathbb{R} \otimes V \rightarrow V, r \otimes v \mapsto r v$ is a well-defined isomorphism.
Exercise 20.2. For all vector spaces U, V, W there exists an isomorphism $U \otimes(V \otimes W) \rightarrow(U \otimes V) \otimes W$ such that $u \otimes(v \otimes w) \mapsto(u \otimes v) \otimes w$.
Notation.

$$
\begin{aligned}
V^{\otimes 0} & :=\mathbb{R} \\
V^{\otimes 1} & :=V \\
V^{\otimes 2} & :=V \otimes V \\
& \vdots \\
V^{\otimes n} & :=V^{\otimes n-1} \otimes V
\end{aligned}
$$

Exercise 20.3. For all vector spaces V, U there exists a natural isomorphism $\operatorname{Hom}\left(V^{\otimes n}, U\right) \rightarrow \operatorname{Mult}(\overbrace{V, \ldots, V}^{n} ; U)$.
Definition 20.5. An associative algebra A is a vector space A over \mathbb{R} together with an \mathbb{R}-bilinear map $m: A \times A \rightarrow A, m(a, b)=a b$ such that $m(m(a, b), c)=m(a, m(b, c))($ that is, $(a b) c=a(b c))$.
Definition 20.6 (6.16 in online notes). An associative algebra is graded (by nonnegative integers) if

$$
A=\bigoplus_{i=0}^{\infty} A_{i}=\sum_{i=0}^{\infty} A_{i}=A_{0} \oplus A_{1} \oplus A_{2} \oplus \cdots
$$

and if for all $a \in A_{i}$ and all $b \in A_{j}$, then $a b \in A_{i+j}$.
Example 20.7. Consider the algebra $\mathbb{R}[x]$ of polynomials in one variable. It is graded by degrees of monomials: $\mathbb{R}[x]=\mathbb{R} \oplus \mathbb{R} x \oplus \mathbb{R} x^{2} \oplus \cdots$.

Definition 20.8 (after 6.16 in online notes). The tensor algebra of a vector space V is an associative algebra $\mathcal{T}(V)=\bigoplus_{n=0}^{\infty} V^{\otimes n}$ with graded multiplication $V^{\otimes n} \times V^{\otimes m} \rightarrow V^{\otimes(n+m)}$ given by $(a, b) \mapsto a \otimes b$.
Remark 20.9. Notice that $\mathcal{T}(V)$ has a unit $1 \in \mathbb{R}$.
Definition 20.10 (6.19 in online notes). Let V be a finite dimensional vector space over \mathbb{R}. A Grassmann algebra $\Lambda^{*} V$ on the vector space V is a graded associative algebra over \mathbb{R} with unit together with an injective linear map $i: V \hookrightarrow \Lambda^{*} V, \Lambda^{1} V=i(V)$ and the following universal property: For any associative algebra A and any linear map $j: V \rightarrow A$ such that $j(v) j(w)=0$ there exists a unique map of algebras $\bar{j}: \Lambda^{*} V \rightarrow A$ such that the following diagram commutes:

[^0]
[^0]: Typeset by R. S. Kueffner II

